Publications

The same list with abstracts

[59] Lebec, L., Labrosse, S., Morison, A., and Tackley, P. J. Effects of salts on the exchanges through high-pressure ice layers of large ocean worlds. Icarus, 2023. in press.
[58] Lebec, L., Labrosse, S., Morison, A., and Tackley, P. J. Scaling of convection in high-pressure ice layers of large icy moons and implications for habitability. Icarus, 396:115494, 2023. [ DOI | Abstract ]
[57] Ricard, Y., Alboussière, T., Labrosse, S., Curbelo, J., and Dubuffet, F. Fully compressible convection for planetary mantles. Geophys. J. Int., 230(2):932–956, 2022. [ DOI | Abstract ]
[56] Hernandez, J.-A., Caracas, R., and Labrosse, S. Stability of high-temperature salty ice suggests electrolyte permeability in water-rich exoplanet icy mantles. Nature Com., 13(1):3303, 2022. [ DOI | Abstract ]
[55] Alboussière, T., Curbelo, J., Dubuffet, F., Labrosse, S., and Ricard, Y. A playground for compressible natural convection with a nearly uniform density. J. Fluid Mech., 940:A9, 2022. [ DOI ]
[54] Ricard, Y., Labrosse, S., Terasaki, H., and Bercovici, D. Thermocapillary effects in two-phase medium and applications to metal-silicate separation. Phys. Earth Planet. Inter., 311:106640, 2021. [ DOI | http | Abstract ]
[53] Morison, A., Labrosse, S., and Choblet, G. Sublimation-driven convection in Sputnik Planitia on Pluto. Nature, 600:419–423, 2021. [ DOI ]
[52] Clarté, T. T., Schaeffer, N., Labrosse, S., and Vidal, J. The effects of a robin boundary condition on thermal convection in a rotating spherical shell. J. Fluid Mech., 918:A36, 2021. [ DOI ]
[51] Bolrão, D. P., Ballmer, M. D., Morison, A., Rozel, A. B., Sanan, P., Labrosse, S., and Tackley, P. J. Timescales of chemical equilibrium between the convecting solid mantle and over-/underlying magma oceans. Solid Earth, 12:421–437, 2021. [ DOI ]
[50] Hsieh, W.-P., Goncharov, A. F., Labrosse, S., Holtgrewe, N., Lobanov, S. S., Chuvashova, I., Deschamps, F., and Lin, J.-F. Low thermal conductivity of iron-silicon alloys at earth's core conditions with implications for the geodynamo. Nature Communications, 11:3332, 2020. [ DOI | Abstract ]
[49] Morison, A., Labrosse, S., Deguen, R., and Alboussière, T. Timescale of overturn in a magma ocean cumulate. Earth Planet. Sci. Lett., 516:25 – 36, 2019. [ DOI | http | Abstract ]
[48] Menaut, R., Corre, Y., Huguet, L., Le Reun, T., Alboussière, T., Bergman, M. I., Deguen, R., Labrosse, S., and Moulin, M. Experimental study of convection in the compressible regime. Phys. Rev. Fluids, 4:033502, 2019. [ DOI | Abstract ]
[47] Curbelo, J., Duarte, L., Alboussière, T., Dubuffet, F., Labrosse, S., and Ricard, Y. Numerical solutions of compressible convection with an infinite Prandtl number: comparison of the anelastic and anelastic liquid models with the exact equations Compressible convection with infinite Prandtl number. J. Fluid Mech, 873:646–687, 2019. [ DOI | http | Abstract ]
[46] Bouffard, M., Choblet, G., Labrosse, S., and Wicht, J. Chemical convection and stratification in the Earth's outer core. Frontiers Earth Sci., 7:99, 2019. [ DOI | http | Abstract ]
[45] Agrusta, R., Morison, A., Labrosse, S., Deguen, R., Alboussière, T., Tackley, P. J., and Dubuffet, F. Mantle convection interacting with magma oceans. Geophys. J. Int., 220:1878–1892, 2019. [ DOI | Abstract ]
[44] Laneuville, M., Hernlund, J., Labrosse, S., and Guttenberg, N. Crystallization of a compositionally stratified basal magma ocean. Phys. Earth Planet. Inter., 276:86–92, 2018. [ DOI | http | Abstract ]
[43] Labrosse, S., Morison, A., Deguen, R., and Alboussière, T. Rayleigh-Bénard convection in a creeping solid with a phase change at either or both horizontal boundaries. J. Fluid Mech., 846:5–36, 2018. [ DOI | Abstract ]
[42] Deguen, R., Alboussière, T., and Labrosse, S. Double-diffusive translation of Earth's inner core. Geophys. J. Int., 214:88–107, 2018. [ DOI | Abstract ]
[41] Hirose, K., Morard, G., Sinmyo, R., Umemoto, K., Hernlund, J. W., Helffrich, G., and Labrosse, S. Crystallization of silicon dioxide and compositional evolution of the Earth's core. Nature, 543(7643), 2017. [ DOI | Abstract ]
[40] Bouffard, M., Labrosse, S., Choblet, G., Fournier, A., Aubert, J., and Tackley, P. J. A particle-in-cell method for studying double-diffusive convection in the liquid layers of planetary interiors. J. Comput. Phys., 346:552 – 571, 2017. [ DOI | http | Abstract ]
[39] Labrosse, S. Thermal state and evolution of the Earth core and deep mantle, pages 43–56. AGU Geophysical Monograph Series, 2016.
[38] Huguet, L., Alboussière, T., Bergman, M. I., Deguen, R., Labrosse, S., and Lesœur, G. Structure of a mushy layer under hypergravity with implications for earth's inner core. Geophys. J. Int., 204:1729–1755, 2016. [ DOI | Abstract ]
[37] Lasbleis, M., Deguen, R., Cardin, P., and Labrosse, S. Earth's inner core dynamics induced by the Lorentz force. Geophys. J. Int., 202:548–563, 2015. [ DOI | http | Abstract ]
[36] Labrosse, S., Hernlund, J. W., and Hirose, K. Fractional melting and freezing in the deep mantle and implications for the formation of a basal magma ocean, volume 212 of AGU Geophysical Monograph, pages 123–142. Wiley, 2015.
[35] Labrosse, S. Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet. Inter., 247:36 – 55, 2015. Transport Properties of the Earth's Core. [ DOI | http | Abstract ]
[34] Jaupart, C., Labrosse, S., Lucazeau, F., and Mareschal, J.-C. 7.06 - temperatures, heat, and energy in the mantle of the Earth. In Schubert, G. and Bercovici, D., editors, Treatise on Geophysics (Second Edition), pages 223 – 270. Elsevier, Oxford, second edition edition, 2015. [ DOI | http ]
[33] Ricard, Y., Labrosse, S., and Dubuffet, F. Lifting the cover of the cauldron: Convection in hot planets. Geochem. Geophys. Geosyst., 15:4617–4630, 2014. [ DOI | http | Abstract ]
[32] Labrosse, S. Thermal and compositional stratification of the inner core. C. R. Geosciences, 346:119–129, 2014. [ DOI | Abstract ]
[31] Hirose, K., Labrosse, S., and Hernlund, J. W. Composition and state of the core. Ann. Rev. Earth Planet. Sci., 41:657–691, 2013. [ DOI | Abstract ]
[30] Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M. J., and Hernlund, J. W. The high conductivity of iron and thermal evolution of the Earth's core. Phys. Earth Planet. Inter., 224:88 – 103, 2013. [ DOI | http | Abstract ]
[29] Ulvrová, M., Labrosse, S., Coltice, N., Raback, P., and Tackley, P. J. Numerical modeling of convection interacting with a melting and solidification front: application to the thermal evolution of the basal magma ocean. Phys. Earth Planet. Inter., 206-207:51–66, 2012. [ DOI | http | Abstract ]
[28] Šrámek, O., Milelli, L., Ricard, Y., and Labrosse, S. Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 217:339–354, 2012. [ DOI | http | Abstract ]
[27] Coltice, N., Rolf, T., Tackley, P. J., and Labrosse, S. Dynamic causes of the relation between area and age of the ocean floor. Science, 336:335–338, 2012. [ DOI | Abstract ]
[26] Ulvrová, M., Coltice, N., Ricard, Y., Labrosse, S., Dubuffet, F., and Šrámek, O. Compositional and thermal equilibration of particles, drops and diapirs in geophysical flows. Geochem. Geophys. Geosyst., 12(10):1–11, 2011. [ DOI | Abstract ]
[25] Coltice, N., Moreira, M., Hernlund, J. W., and Labrosse, S. Crystallization of a basal magma ocean recorded by helium and neon. Earth Planet. Sci. Lett., 308:193–199, 2011. [ DOI | http | Abstract ]
[24] Javoy, M., Kaminski, E., cois Guyot, F., Andrault, D., Sanloup, C., Moreira, M., Labrosse, S., Jambon, A., Agrinier, P., Davaille, A., and Jaupart, C. The chemical composition of the Earth: Enstatite chondrite models. Earth Planet. Sci. Lett., 293(3-4):259 – 268, 2010. [ DOI | http | Abstract ]
[23] Ichikawa, H., Labrosse, S., and Kurita, K. Direct numerical simulation of an iron rain in the magma ocean. J. Geophys. Res., 115(B1):B01404, 2010. [ DOI | http | Abstract ]
[22] Ichikawa, H. and Labrosse, S. Smooth particle approach for surface tension calculation in moving particle semi-implicit method. Fluid Dynamics Research, 42(3):035503, 2010. [ http | Abstract ]
[21] Breuer, D., Labrosse, S., and Spohn, T. Thermal evolution and magnetic field generation in terrestrial planets and satellites. Space Sci. Rev., 152(1):449–500, 2010. [ DOI | http ]
[20] Aubert, J., Labrosse, S., and Poitou, C. Modelling the palaeo-evolution of the geodynamo. Geophys. J. Int., 179:1414–1428, 2009. [ DOI | Abstract ]
[19] van Thienen, P., Benzerara, K., Breuer, D., Gillmann, C., Labrosse, S., Lognonné, P., and Spohn, T. Water, life, and planetary geodynamical evolution. Space Sci. Rev., 129(1):167–203, 2007. [ DOI | http | Abstract ]
[18] Pouilloux, L., Kaminski, E., and Labrosse, S. Anisotropic rheology of a cubic medium and implications for geological materials. Geophys. J. Int., 170(2):876–885, 2007. [ DOI | http | Abstract ]
[17] Labrosse, S., Hernlund, J. W., and Coltice, N. A crystallizing dense magma ocean at the base of Earth's mantle. Nature, 450:866–869, 2007. [ DOI | Abstract ]
[16] Labrosse, S. and Jaupart, C. Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett., 260:465–481, 2007. [ DOI | http | Abstract ]
[15] Labrosse, S. Energy source for the geodynamo. In Gubbins, D. and Herrero-Bervera, E., editors, Encyclopedia Of Geomagnetism And Paleomagnetism, pages 300–302. Springer, 2007.
[14] Labrosse, S. Heat flow across the core-mantle boundary. In Gubbins, D. and Herrero-Bervera, E., editors, Encyclopedia Of Geomagnetism And Paleomagnetism, pages 127–130. Springer, 2007.
[13] Jaupart, C., Labrosse, S., and Mareschal, J.-C. 7.06 - temperatures, heat and energy in the mantle of the Earth. In Schubert, G. and Bercovici, D., editors, Treatise on Geophysics, pages 253 – 303. Elsevier, Amsterdam, 2007. [ DOI ]
[12] Hernlund, J. W. and Labrosse, S. Geophysically consistent values of the perovskite to post-perovskite transition Clapeyron slope. Geophys. Res. Lett., 34:L05309, 2007. doi:10.1029/2006GL028961. [ Abstract ]
[11] Grigné, C., Labrosse, S., and Tackley, P. J. Convection under a lid of finite conductivity in wide aspect ratio models: effect of continents on the wavelength of mantle flow. J. Geophys. Res., 112(B8):B08403, 2007. [ DOI | http | Abstract ]
[10] Grigné, C., Labrosse, S., and Tackley, P. J. Convection under a lid of finite conductivity: Heat flux scaling and application to continents. J. Geophys. Res., 112(B8):B08402, 2007. [ DOI | http | Abstract ]
[9] Grigné, C., Labrosse, S., and Tackley, P. J. Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth. J. Geophys. Res., 110(B3):B03409, 2005. [ DOI | Abstract ]
[8] Labrosse, S. and Macouin, M. The inner core and the geodynamo. C. R. Geosciences, 335(1):37–50, 2003. [ DOI | http | Abstract ]
[7] Labrosse, S. Thermal and magnetic evolution of the Earth's core. Phys. Earth Planet. Inter., 140:127–143, 2003. [ DOI | http | Abstract ]
[6] Labrosse, S. Hotspots, mantle plumes and core heat loss. Earth Planet. Sci. Lett., 199:147–156, 2002. [ DOI | http | Abstract ]
[5] Labrosse, S., Poirier, J.-P., and Le Mouël, J.-L. The age of the inner core. Earth Planet. Sci. Lett., 190:111–123, 2001. [ DOI | http | Abstract ]
[4] Grigné, C. and Labrosse, S. Effects of continents on Earth cooling: Thermal blanketing and depletion in radioactive elements. Geophys. Res. Lett., 28:2707–2710, 2001. [ DOI | Abstract ]
[3] Bellanger, E., Le Mouël, J.-L., Mandea, M., and Labrosse, S. Chandler wobble and geomagnetic jerks. Phys. Earth Planet. Inter., 124:95–103, 2001. [ DOI | http | Abstract ]
[2] Sotin, C. and Labrosse, S. Three-dimensional thermal convection of an isoviscous, infinite–Prandtl–number fluid heated from within and from below: applications to heat transfer in planetary mantles. Phys. Earth Planet. Inter., 112:171–190, 1999. [ DOI | http | Abstract ]
[1] Labrosse, S., Poirier, J.-P., and Le Mouël, J.-L. On cooling of the Earth's core. Phys. Earth Planet. Inter., 99:1–17, 1997. [ DOI | http | Abstract ]

This file was generated by bibtex2html 1.99.